Beiträge

Interview mit Daniel Heß von der IAV

Interview mit Daniel Heß von der IAV GmbH in Berlin. Daniel Hess ist Head of Department Software & Algorithms bei der IAV und wird am zweiten Tag der Data Leader Days 2018 zu einem besonders innovativen Thema in der Automobilindustrie referieren: „Der digitale Autodoktor, von den Symptomen zur Ursache“.

1. Herr Heß, womit genau befassen Sie sich bei IAV? Und welche Rolle spielt Data Science dabei?

Wir entwickeln Steuergerätesoftware und –systeme für die Automobilindustrie und industrielle Anwendungen wie Windkraft und Bohrtechnik.

Wir nutzen Data Science auf vielfältige Weise. Schwerpunkt ist natürlich – unserer Herkunft entsprechend – die Modellierung physikalisch-chemischer Prozesse in Motoren und Abgasanlagen. Hier haben wir in der Vergangenheit schon so viele Messdaten aus unseren Entwicklungsprojekten aufgezeichnet, dass sie von Hand nicht mehr auszuwerten waren. Darum sind bei uns viele Algorithmen zum Auffinden von Events in großen Datenmengen und zur Berechnung empirischer Modelle entstanden. Heute wenden wir zusätzlich auch Methoden an, die man der „Künstlichen Intelligenz“ zuordnen würde, z. B. Random Forest Klassifikatoren oder Neuronale Netze.

2. Stichwort: momentane Herausforderungen. Welche Anwendungsfälle und Ideen beschäftigen Sie im Moment konkret? 

Ein sehr aktuelles Thema ist die Erkennung von Fehlern in der Abgasanlage und der Hinweis auf die fehlerhafte Komponente. Die Abgasreinigung von Verbrennungsmotoren funktioniert heute nur noch im komplexen Zusammenspiel verschiedener Komponenten: Katalysatoren, Sensoren, Steller, Reduktionsmedien wie AdBlue etc. Salopp gesagt: Ein moderner Pkw ist ein kleines Chemiewerk, das spazieren fährt und dafür sorgt, dass hinten möglichst saubere Luft herauskommt. Kleine Fehler bei Bauteilen – etwa durch Alterung oder Verschleiß – haben großen Einfluss auf die Güte der Abgasreinigung und müssen deshalb sofort erkannt werden. Natürlich will man beim Werkstattaufenthalt nicht die gesamte Anlage tauschen, sondern nur das fehlerhafte Bauteil.

3. Und wohin geht die Reise bei Ihren Themen?

Heute arbeiten wir „offline“ – das heißt mit Daten, die irgendwann einmal bei einem Fahr- oder Prüfstandsversuch aufgezeichnet wurden. Sie stammen üblicherweise von einer sehr begrenzten Zahl von Versuchsfahrzeugen, die sehr teuer und entsprechend rar sind. Unsere Ergebnisse und Algorithmen werden dann im Anschluss recht statisch und fest in die Serienfahrzeuge einprogrammiert. In Zukunft können wir uns natürlich vorstellen, einige Strategien auch im Fahrbetrieb lernen zu lassen. Man könnte zum Beispiel die Werte aus verschiedenen Fahrzeugen miteinander vergleichen, um zu sehen, was normal ist und damit eine höhere Robustheit für Diagnosen erzielen. Heute ist das noch nicht möglich, denn die wenigsten Autos sind ununterbrochen online. Außerdem wären die Datenmengen so groß, dass sie die heute übliche Bandbreiten und Speicherkapazitäten sprengen würden.

4. Unternehmen erkennen nach und nach den Wert von Daten und versuchen, Strategien für deren Nutzung zu entwickeln. Wie sehen Sie die Lage in ihrem Umfeld?

Der Wert von Daten liegt für uns heute vor allem in der Verbesserung unserer Entwicklungsprozesse und -ergebnisse. Wir können durch Datenanalysen einfach schneller und genauer sein. Unsere Datenstrategie zielt darum im Wesentlichen darauf ab, aus unseren Messdaten Wissen über Zusammenhänge in Motor und Abgasnachbehandlung zu generieren, das wir dann in Modellen anwenden können. Ziele können dabei sein: höhere Modellgüte, geringerer Aufwand bei der projektspezifischen Parametrierung der Modelle durch Machine Learning oder die Optimierung des Messprozesses, was zu weniger Messungen führen würde.

5. Die Anforderungen sind vielfältig. Wie schaffen Sie es, dass sich ihre Teams den unterschiedlichen Aufgaben in den jeweiligen Branchen stellen können?

Neben den Data Scientists binden wir natürlich auch immer Fachexperten ein, die ihr System (zum Beispiel Motor oder Katalysator) kennen wie ihre sprichwörtliche Westentasche. Zusätzlich implementieren unsere Softwareentwickler die Ideen in robusten serientauglichen Code. Durch diese interdisziplinäre Zusammenarbeit entstehen viele neue Ideen und am Ende gute Lösungen.

6. Welche Rolle spielen Tools und Methoden dabei?

Wir setzen selbstverständlich Standardtools wie Matlab/Simulink und vor allem auch Python ein – letzteres bietet uns vielfältige Möglichkeiten und zahlreiche Libraries zu Themen wie maschinelles Lernen, Statistik und diskreter Mathematik. Hier wäre es einfach nicht sinnvoll, das Rad neu zu erfinden. Manchmal sind unsere Probleme aber doch so speziell, dass wir selbst etwas entwickeln müssen. Dabei liegt unser Fokus immer darauf, wiederkehrende Routineaufgaben zu automatisieren. Gerade in der Datenbereitstellung und der explorativen Analyse können uns Tools eine Menge Arbeit abnehmen. Dafür haben wir mit „IAV Mara“ auch ein eigenes Werkzeug entwickelt, das wir als Produkt vertreiben.

Der Einsatz von Künstlicher Intelligenz zur Auswertung von Geschäfts- oder Maschinendaten ist das Leit-Thema der zweitägigen Data Leader Days 2018 in Berlin. Am 14. November 2018 sprechen renommierte Data Leader über Anwendungsfälle, Erfolge und Chancen mit Geschäfts- und Finanzdaten. Der 15. November 2018 konzentriert sich auf Automotive- und Maschinendaten mit hochrangigen Anwendern aus der produzierenden Industrie und der Automobilzuliefererindustrie. Seien Sie dabei und nutzen Sie die Chance, sich mit führenden KI-Anwendern auszutauschen.

IAV ist Sponsor der Data Leader Days 2018 in Berlin

Die Data Leader Days (www.dataleaderdays.com) am 14. und 15. November 2018 im Berliner Spreespeicher sind das führende Entscheider-Event, das sich mit den Möglichkeiten und Lösungen rund um die Digitalisierung, Big Data und künstlicher Intelligenz beschäftigt. Vor allem die hochkarätigen Referenten – die Spitze der deutschen Digitalwirtschaft – ziehen dabei Teilnehmer aus der ganzen DACH-Region an, um neue Kontakte zu knüpfen und wichtige Impulse für die eigene Weiterentwicklung zu erhalten.

Als einer der global führenden Engineering-Partner entwickelt IAV die Mobilität der Zukunft. Dabei bewährt sich herstellerübergreifende Engineering in Fahrzeugen auf der ganzen Welt. Mit mehr als 35 Jahren Erfahrung und einem unübertroffenen Kompetenzspektrum bringen die Mitarbeiter der IAV das Beste aus unterschiedlichsten Welten zusammen: Automotive- und IT-Welt, Hardware- und Software-Welt, Produkt- und Service-Welt.

Auftraggeber werden an über 25 IAV-Standorten mit mehr als 7.000 Mitarbeitern und einer erstklassigen technischen Ausstattung bei der Realisierung ihrer Projekte unterstützt – vom Konzept bis zur Serie, für das Ziel: bessere Mobilität.

Daniel Hess ist Head of Department Software & Algorithms bei der IAV und wird am zweiten Tag der Data Leader Days zu einem besonders innovativen Thema in der Automobilindustrie referieren: „Der digitale Autodoktor, von den Symptomen zur Ursache“.

Zu den weiteren Speakern gehören das Who´s Who der Datenwirtschaft, u.a. Gerhard Baum (CDO, Schaeffler), Marcus Hartmann (CDO, Pro7Sat1), Dr. Joachim Schmalzl (Vorstand, Deutscher Sparkassen- und Giroverband), Brian Timmeny (Airbus), Dr. Dirk Haft (Vorstand, Wittenstein), Thomas Gottschalk (Head of BASF 4.0), Dr. Helmut Linde (Global Head of Data Science, Merck), Tom Oelsner (Chief Innovation Officer, Heidelberger Druckmaschinen), Dr. Markus Rotter (Head of Network Analytics, Vodafone), Andreas Eickelkamp (CDO, FTI), Dr. Helmut Linde (Global Head of Data Science & Analytics, Merck), uvm.

Zum Event anmelden können sich Teilnehmer direkt auf Data Leader Days.

Interview: Dem Wettbewerb voraus mit Künstlicher Intelligenz

Interview mit Benjamin Aunkofer, Chief Data Scientist bei DATANOMIQ Applied Data Science, über die Anwendungen, die KI schon heute übernehmen kann und was bis 2020 auf deutsche Unternehmen zukommt.

Benjamin Aunkofer ist Chief Data Scientist bei DATANOMIQ und befasst sich mit Data Science und Machine Learning im Kontext von Business Analytics. Er ist in der Praxis und in der Lehre tätig. Neben dem täglichen Beratungsgeschäft arbeitet Herr Aunkofer mit seinem Team an einer Artificial Intelligence Enterprise Integration, einer universellen Plattform für KI im Unternehmen.

Möchten Sie Herrn Aunkofer persönlich kennenlernen? Treffen Sie ihn persönlich an einem der beiden Data Leader Days 2018 (www.dataleaderdays.com).

1. Herr Aunkofer, Künstliche Intelligenz scheint das Buzzword für 2018 zu sein. Alles nur Hype?

Big Data war das Buzzword der vergangenen Jahre und war – trotz mittlerweile etablierter Tools wie SAP Hana, Hadoop und weitere – betriebswirtschaftlich zum Scheitern verurteilt. Denn Big Data ist ein passiver Begriff und löst keinesfalls auf einfache Art und Weise alltägliche Probleme in den Unternehmen. Soweit liegen Kritiker richtig.

Dabei wird völlig verkannt, dass Big Data die Vorstufe für den eigentlichen Problemlöser ist, der gemeinhin als Künstliche Intelligenz (KI) bezeichnet wird. KI ist ein Buzzword, dessen langfristiger Erfolg und Aktivismus selbst von skeptischen Experten nicht infrage gestellt wird. Daten-Ingenieure sprechen im Kontext von KI hier aktuell bevorzugt von Deep Learning; wissenschaftlich betrachtet ein Teilgebiet der KI. Da die meisten Leser mit dem Begriff „KI“ wohl eher Hollywood-Bilder im Kopf haben, versuche ich begrifflich bei „Deep Lerning“ zu bleiben. Ich entschuldige mich aber im Voraus dafür, dass ich dann doch wieder selbst von KI sprechen werde, damit dann aber im Kern Deep Learning meine.

2. Was kann Deep Learning denn schon heute im Jahr 2018?

Deep Learning Algorithmen laufen bereits heute in Nischen-Anwendungen produktiv, beispielsweise im Bereich der Chatbots oder bei der Suche nach Informationen als Suchmaschine. Sie übernehmen ferner das Rating für die Kreditwürdigkeit und sperren Finanzkonten, wenn sie erlernte Betrugsmuster erkennen. Im Handel findet Deep Learning bei bestimmten Pionieren die optimalen Einkaufsparameter sowie den besten Verkaufspreis, zumindest für ausgewählte Produktgruppen.

Getrieben wird Deep Learning insbesondere durch prestigeträchtige Vorhaben wie das autonome Fahren, dabei werden die vielfältigen Anwendungen im Geschäftsbereich oft vergessen.

3. Wo liegen die Grenzen von Deep Learning?

Und Big Data ist das Futter für Deep Learning. Daraus resultiert auch die Grenze des Möglichen, denn für strategische Entscheidungen eignet sich KI bestenfalls für das Vorbereitung einer Datengrundlage, aus denen menschliche Entscheider eine Strategie entwickeln. KI wird zumindest in dieser Dekade nur auf operativer Ebene Entscheidungen treffen können, insbesondere in der Disposition, Instandhaltung, Logistik und für den Handel auch im Vertrieb – anfänglich jeweils vor allem als Assistenzsystem für die Menschen.

Sicherlich gibt es immer auch eher frustrierende Erfahrung mit Deep Learning. Es gibt immer noch etliche Bugs in Bilderkennungssoftware und auch Chatbots oder Assistenzsystem wie Alexa, Cortana oder Siri sind nicht ohne Frustpotenzial, da alles noch nicht reibungslos funktioniert. Vor zwei Jahrzehnten waren Touchscreens oder internetfähige mobile Endgeräte nicht frustfrei nutzbar, heute jedoch aus unserem Alltag nicht mehr wegzudenken. Ähnlich wird sich das auch mit künstlicher Intelligenz verhalten.

Genau wie das autonome Fahren mit Assistenzsystemen beginnt, wird auch im Unternehmen immer mehr die KI das Steuer übernehmen.

4. Was wird sich hinsichtlich KI bis 2020 tun? Wie wird sich der Markt wandeln?

Derzeit stehen wir erst am Anfang der Möglichkeiten, die Künstliche Intelligenz uns bietet. Das Markt-Wachstum für KI-Systeme und auch die Anwendungen erfolgt exponentiell. Entsprechend wird sich auch die Arbeitsweise für KI-Entwickler ändern müssen. Mit etablierten Deep Learning Frameworks, die mehrheitlich aus dem Silicon Valley stammen, zeichnet sich der Trend ab, der für die Zukunft noch weiter professionalisiert werden wird: KI-Frameworks werden Enterprise-fähig und Distributionen dieser Plattformen werden es ermöglichen, dass KI-Anwendungen als universelle Kernintelligenz für das operative Geschäft für fast alle Unternehmen binnen weniger Monate implementierbar sein werden.

Wir können bis 2020 also mit einer Alexa oder Cortana für das Unternehmen rechnen, die Unternehmensprozesse optimiert, Risiken berichtet und alle alltäglichen Fragen des Geschäftsführers beantwortet – in menschlich-verbal formulierten Sätzen.

Der Einsatz von Künstlicher Intelligenz zur Auswertung von Geschäfts- oder Maschinendaten ist auch das Leit-Thema der zweitägigen Data Leader Days 2018 in Berlin. Am 14. November 2018 sprechen renommierte Data Leader über Anwendungsfälle, Erfolge und Chancen mit Geschäfts- und Finanzdaten. Der 15. November 2018 konzentriert sich auf Automotive- und Maschinendaten mit hochrangigen Anwendern aus der produzierenden Industrie und der Automobilzuliefererindustrie. Seien Sie dabei und nutzen Sie die Chance, sich mit führenden KI-Anwendern auszutauschen.