Beiträge

Data Leader Days are canceld for 2020

Unfortunately, due to the current crisis with the Corona Virus Covid-19, we have to cancel our successful Data LeaderDays for 2020. This year neither the Data Leader Days will take place nor any other events like our MeetUps or the Data Hacker Days.

Interview: Industrie 4.0 – Wie geht’s weiter?

Interview mit Herrn Thomas Hösle von ELABO

Digitalisierung in der Industrie gilt nun als ein altes Thema. Welchen Blickwinkel haben Sie heute noch auf die sogenannte Industrie 4.0.

Das Besondere an Industrie 4.0 ist ja, dass der in 2011 geprägte Begriff nicht beschreibt, was schon geschehen ist – im Gegensatz zu den Vorgängerbegrifflichkeiten ! – sondern was noch umgesetzt werden soll.

Den Kern von Industrie 4.0 bilden aus meiner Sicht unverändert die technologischen Elemente wie Digitalisierung, Connectivity und Automatisierung. Mit deren Hilfe soll einerseits die operative Exzellenz in Industrieunternehmen gesteigert werden, andererseits sollen auch neue, digitale Geschäftsmodelle entstehen, getreu dem Motto „Uber yourself or you will be kodaked“.

Inzwischen sind Industrie 4.0-Anwendungen – insbesondere zur Steigerung der Effizienz und Qualität sowie zur Erhöhung der Arbeitsflexibilität – salonfähig und auch umgesetzt geworden, ohne aber bereits ein Endstadium erreicht zu haben. Wo es aus meiner Sicht noch deutlichen Nachholbedarf gibt, ist bei der Nutzung der Digitalisierung für neue Geschäftsmodelle, insbesondere bei datengetriebenen Geschäftsmodellen.

Inwieweit spielen die entstehenden Daten eine Rolle in ihren Wertschöpfungsketten? Wie werden diese in ihren Systemen genutzt? Und was wird zukünftig möglich werden?

Wir sind ein typisches Beispiel für einen zweigeteilten Ansatz. Als Anwender mit überwiegend individuellen und manuellen Tätigkeiten in der Kleinserie mit hoher Varianz stehen wir bei der Erfassung bzw. Nutzung von Daten in unserer eigenen Wertschöpfungskette erst an zarten Anfängen.

Mit unserer Fabriksoftware „ELUTION“ hingegen ermöglichen wir unseren Kunden die aktive Nutzung von Daten dank der Module „Smart Data“ (automatisierte Erfassung und Archivierung prozessbezogener Daten) sowie „Analyzer Tool“. Mit letzterem erhalten die Anwender eine transparente Dokumentation aller erfassten Wertschöpfungsschritte (z.B. in einer Montage), um darauf aufbauend – entweder mit menschlicher oder künstlicher Intelligenz – Optimierungen hinsichtlich Produktivität, Qualität und Kosten unter Vermeidung von Verschwendung (Lean-Prinzipien) zu veranlassen.

Im Sinne des PDCA-Kreislauf können dann die Umsetzungsergebnisse überprüft und gegebenfalls nachgeschärft werden.

Gehen Industrie 4.0 und Künstliche Intelligenz also doch Hand in Hand?

Wenn man unter Industrie 4.0 auch versteht, dass durch den Einsatz von Sensoren (Cyberphysische Systeme) systematisch relevante Daten gesammelt werden zur Verbesserung der operativen Exzellenz, dann ist dieser Schritt wie beim Eiskunstlauf der Pflichtteil. Die Kür besteht darin, über geeignete Algorithmen – sprich KI – diese Daten in Wissen zu transformieren, um Prozesse zu optimieren, Qualität zu erhöhen und Kosten zu reduzieren. Somit geht also Industrie 4.0. Hand in Hand mit der Künstlichen Intelligenz, die als nützliches Tool in der großen Werkzeugkiste der digitalen Transformation fungiert.

Was sind aktuell die wichtigsten Use-Cases die genau jetzt und noch im Jahr 2020 eine markante Rolle spielen werden?

Die wichtigsten Use-Cases bestehen aus unserer Sicht in einem Zweiklang. Es geht zum einen darum, deutlich früher und besser über potentielle Störfälle informiert zu werden. Hierzu dienen predictive und prescriptive-Lösungen, wo KI-Anwendungen einen hohen Nutzenbeitrag leisten. Zum anderen geht es aber auch darum, die time-to-repair im Störfall zu minimieren. Dank digitaler Störungsmanagement Werkzeuge können die Ausfallzeiten von Maschinen und Anlagen deutlich reduziert werden, ohne auf das Erfahrungswissen einzelner Mitarbeiter angewiesen zu sein. Über eine digitale Lebensakte der Maschinen und Anlagen werden relevante Daten systematisch archiviert und stehen dezentral für jeden Mitarbeiter zur Verfügung, um Störfälle rasch und effizient zu beheben.


Thomas Hösle präsentiert am 14. November 2019, dem zweiten Tag der Data Leader Days 2019, über „Systematische Datengenerierung auf dem Shopfloor“.

Tickets für die Konferenz finden Sie auf der offiziellen Startseite, unter www.dataleaderdays.com.

Interview: Daten – Chancen und Herausforderungen für eventim

Fred Türling ist Senior Vice President Information Science bei der CTS Eventim AG. Schwerpunkte seiner 20-jährigen analytischen Arbeit liegen in den Fachgebieten Social Media und Web Analytics, Targeting und Kampagnen Management, Business Intelligence und Data Warehousing für die Branchen Medien, Handel sowie Internet- und Telekommunikations-Services. Zuvor war Türling in leitenden Positionen bei United Internet Media, SHS VIVEON, AOL, Otto und Siemens tätig.

 

Insbesondere Geschäftsmodelle mit vielen Teilnehmern, wie das Ticketing im Live Entertainment, gelten als besonders potent hinsichtlich der Datennutzung. Können Sie das bestätigen?

Eventim verkauft pro Jahr über 250 Millionen Eintrittskarten zu 850.000 Events in 21 Märkten. Wir nutzen unseren Datenschatz zum einen für die personalisierte Ansprache unserer B2C Kunden, insbesondere in der Empfehlung relevanter Events. Zum anderen testen wir die Datennutzung auch in der Event-Planung und -Advertisment für unser Promoter-Netzwerk EVENTIM LIVE, das mehr als 25 Veranstalter umfasst.

In Deutschland wird genauer auf die Speicherung von Daten geschaut und auch sehen die Menschen hierzulande die Speicherung ihrer Daten kritischer als in anderen Ländern. Stört diese Tatsache Sie bei der Geschäftsentwicklung?
Mit der DSGVO und der EU-Privacy Verordnung hat der Gesetzgeber klare Rahmenbedingungen geschaffen, um für den Verbraucher eine hohe Transparenz und Kontrolle über Datennutzung zu etablieren. Richtig angewandt behindern diese die Datennutzung für Unternehmen nicht, insbesondere, wenn der Kunde den Mehrwert der darauf aufsetzenden Services erklärt bekommt.

Bei welchen kaufmännischen Herausforderungen wird Ihnen Data Science und KI helfen können?
Wie beschrieben sehen wir attraktive Nutzungsmöglichkeiten im Marketing und im Produkt Management – erfolgreiche Use Cases müssen aber in der Regel solide entwickelt, getestet und vielfach in mehreren Stufen optimiert werden.

Stand heute: Was sind Ihre Top-Anwendungsfälle für Predictive Analytics? Welche Methoden und Technologien nutzen Sie dafür?

Für unsere Recommendation Engine nutzen wir eine Überlagerung mehrerer algorithmischer Ansätze u.a. z.B. Random Forest – wir testen aber regelmäßig weitere Modelling Verfahren. In einigen Scoring Aufgaben haben wir auch recht einfache logistische Regressionen im Einsatz.

 


Fred Türling präsentiert am 13. November 2019, dem ersten Tag der Data Leader Days 2019, über „Event Recommendation in der Customer Journey zum Live Entertainment“.

Tickets für die Konferenz finden Sie auf der offiziellen Startseite, unter www.dataleaderdays.com.

Interview: IoT Lösung zur Übertragung großer Datenmengen

Herr Mike Bischoff ist Chief Digital Officer bei der Signify GmbH (ehemals Philips Lighting GmbH). Er studierte Wirtschaftswissenschaften in Bremen und war dann anschließend über 10 Jahre als CIO in der IT- und Getränkebranche tätig. Seit ca. sechs Jahren ist er bei Signify/Philips Lighting im Marketing bzw. seit 1. Januar 2019 im Vorstand des DACH Marktes als CDO tätig.

 

Inwiefern wird Ihrer Meinung nach die Li-Fi Technik die IoT Welt verändern? In welchen Bereichen und/oder ganzen Branchen wird Li-Fi sich gegenüber etablierten Techniken durchsetzen?

Im Jahre 2022 werden wir weltweit bereits über 50 Mrd. IoT Devices haben, die kontinuierlich mit dem Internet verbunden sind und über angebundene Sensoren gigantische Datenmengen sammeln und übertragen. Über 40.000 Petabytes an Daten werden bereits ab 2020 monatlich übermittelt. Die Nachfrage steigt weiter stetig an, aber das Angebot – Breitbandinternet über Radiofrequenzwellen wie WiFi – kann nicht mehr ausgeweitet werden. Das Radiospektrum ist irgendwann voll ausgelastet. Das Problem bemerken wir schon heute in stark frequentierten Mobilfunknetzen, wie z.B. in Fußballstadien. Die alternative Frequenz über die LiFi kommuniziert ist in der Hinsicht ein Vorteil, weil die bisherige Funkkommunikation inzwischen Ausmaße angenommen hat, die vergleichbar sind mit verstauten Autobahnen. Wir nutzen mit LiFi praktisch eine alternative Autobahn, die uns hohe Performance und Stabilität bietet. Wir benötigen also eine neue Technologie die Daten nicht mehr über Radiofrequenzen, sondern über Lichtwellen Daten überträgt, um den ständig wachsenden Bedarf zu bedienen. Die Vorteile Daten über Licht zu übertragen sehen wir z.B. in Hochsicherheitsbereichen, Industry 4.0, Machine-To-Machine Kommunikationen oder auch in Bereichen in denen Radiofrequenzwellen störend oder gefährlich sein können. Da Licht nicht durch Wände geht, ist es unmöglich, dass sich jemand unbefugt in ein Netz einhacken kann, der nicht im gleichen Raum sitzt. Auch wird die Verbindung in dem Moment unterbrochen, wenn das Licht ausgeschaltet wird. So hat man volle Kontrolle. Zudem ist die Bandbreite bei der Übertragung von Daten über Lichtwellen bis zu 1000-mal größer als bei Radiofrequenzwellen.

 

Welche Herausforderungen sehen Sie bezogen auf Mensch und Technik um die Li-Fi Technologie als festen Bestandteil von IoT Lösungen zu etablieren?

Eine Herausforderung stellt heute noch die Kompatibilität der Endgeräte der Nutzer dar. Zwar können wir bei allen Geräten mit USB Anschluss ganz einfach und unkompliziert einen Zugangsschlüssel über die USB Schnittstelle zuführen. Damit die LiFi Technologie aber als fester Bestandteil von IoT Lösungen zu etablieren ist, müssten diese Infrarot-Transceiver in den Endgeräten direkt implementiert werden. Man kann das, glaube ich, ganz gut mit der Frühphase von Wi-Fi vergleichen: Am Anfang benötigten alle Wi-Fi Nutzer noch einen USB-Stick oder USB-Dongle, um sich mit einem WiFi-Netzwerk verbinden zu können. Mittlerweile ist die Empfangstechnologie standardmäßig in allen smarten Geräten (PCs, Smartphones, TVs & Co.) integriert. Das ist auch unser Ziel um LiFi massenmarkttauglich zu machen.

 

Welche wesentlichen Fähigkeiten muss ein Data Scientist Ihrer Meinung nach mitbringen, welche ihn von dem klassischen ITler unterscheiden? Wie würden Sie einen Berufseinsteiger das Berufsbild des Data Scientists erklären?

In unserer Markt-Organisation haben wir bislang noch keine Data Scientists beschäftigt. Meine Vorstellung der Persönlichkeit eines Data Scientists kann allerdings nicht die reine „klassische Ausprägung“ von Fähigkeiten wie technischen, analytischen und logischen Denken sein. Die Kombination aus mathematischen Fähigkeiten, unternehmerischen Denken und Kommunikationsstärke sind aus meiner Sicht für diesen Beruf die wichtigsten Eigenschaften. Das heißt der Transfer von Datenanalysen zu Hypothesen und zu praktischen Geschäftsentscheidungen ist der entscheidende Erfolgsfaktor. Eine herausragende Fähigkeit ist es dann, wenn er/sie eine komplexe Thematik/Hypothese in einen überzeugenden Elevator Pitch für das Management umwandeln kann. Aber letztendlich hängt es davon ab, dass wir als Unternehmen genauestens definieren, was wir von einem Data Scientist erwarten. Wenn man den Luxus hat, über ein Team von Data Scientists zu verfügen, müssen nicht alle Persönlichkeitsanforderungen in einer Person gebündelt sein, aber dann braucht es hier natürlich eine gesunde Teamstruktur und Kommunikation, d.h. die richtige Mischung aus intro-/extrovertierten und aktiven/reaktiven Persönlichkeiten.

In welchen Anwendungsfeldern arbeiten Data Scientists in Ihrem Haus hauptsächlich? 

Data Scientists sind aktuell bei uns nur in den globalen Business Groups, aber noch nicht in den Märkten wie DACH tätig. In den Business Groups fokussieren sich die Data Scientists derzeit auf die riesigen Datenmengen, die durch unsere IoT-Lösungen in Smart Cities, Buildings und Manufacturing gewonnen werden. Alle unsere Leuchten werden bald nur noch connected sein und werden mit vielfältigsten Sensoren ausgerüstet, die Temperaturen, Lichtintensität, Geräusche, Wetterdaten, etc. auswerten können. Hier kommt den Data Scientists eine wichtige Rolle zu, darauf basierend die richtigen Business Modelle mit Mehrwerten für unsere Kunden zu entwickeln. In den Vertriebsorganisation sehe ich Anwendungsfälle für Data Scientists insbesondere im Marketing und hier im Bereich „intelligent/dynamic Pricing“.

Wie würden Sie den folgenden Satz vervollständigen?

Meine ehemalige Position als Marketing Director befähigt mich… die entscheidenden Kriterien „Markt“, „Produkte & Systeme“ sowie „Customer Experience“ in der Definition und Umsetzung der Digital Transformation Agenda einfließen zu lassen. Natürlich hat mir die Rolle auch die wichtige Vernetzung zu globalen und lokalen Stakeholdern, wichtigen Kunden und Marktpartnern sowie zur Belegschaft gebracht, die mir bei der Umsetzung der digitalen Agenda sehr nützlich sind.


Mike Bischoff präsentiert am 14. November 2019, dem zweiten Tag der Data Leader Days 2019, über „LiFi – Drahtlose Übertragung großer Datenmengen über sichtbares Licht für die IoT-Lösungen der Zukunft“.

Tickets für die Konferenz finden Sie auf der offiziellen Startseite, unter www.dataleaderdays.com.

Das Who’s Who der Datenwirtschaft auf den Data Leader Days 2018

Fordern Sie die Vorträge kostenfrei an

Berlin, Dezember 2018: Die Data Leader Days am 14./15. November 2018 im Berliner Spreespeicher haben erneut die Entscheider aus der Business- und Digitalwelt versammelt und wichtige Impulse ausgesendet. Die in diesem Jahr zum dritten Mal stattfindende Veranstaltung verzeichnete mit knapp 300 Teilnehmern einen enormen Besucherzuwachs. Organisiert wurde die Konferenz von DATANOMIQ und dem Connected Industry.

Der Auftakttag stand ganz unter dem Zeichen von Commercial und Finance Data: Besondere Highlights waren hier die Vorträge von Dr. Joachim Schmalzl, Vorstandsmitglied des Dt. Sparkassen- und Giroverbands, der auf die Fortschritte der Sparkassen bei der Umsetzung von digitalen Innovationen einging sowie Marcus Hartmann, Chief Data Officer der ProSieben Sat. 1 Media mit seiner Keynote. Im Fokus des zweiten Tages standen Industrial und Automotive Data. Hier konnten Digitalmanager von BASF, Heidelberger Druckmaschinen, E.ON, Wittenstein, Vodafone, Schaeffler und Airbus anhand von Live Demos und Use Cases die Themen Data Science & Machine Learning, Data Engineering sowie Data Visualization vorstellen.

Die Vorträge können Sie kostenfrei unter

linhchi.nguyen@connected-industry.com anfordern.

Die Data Leader Days freuen sich auch im nächsten Jahr wieder auf eine große Resonanz. Das Event findet wieder in Berlin am 13./14. November 2019 statt.

Video-Rückblick zu den Data Leader Days 2018

Wir bedanken und herzlichst für die erfolgreichen Konferenztage. Einen besonderen Dank an den Moderator, die Speaker, Sponsoren und an unsere zahlreichen Teilnehmern.

Interview mit Dr. Dirk Haft von Wittenstein SE

Interview mit Dr. Dirk Haft, Vorstand bei WITTENSTEIN SE

Dr. Dirk Haft ist seit dem 1. April 2016 einer von vier Vorstandsmitgliedern bei der WITTENSTEIN AG. Zusammen mit Dr. Khaled Karraï hat er das Unternehmen attocube systems AG gegründet – Technologieführer für anspruchsvollste Antriebs- und Messtechnik im Nanometerbereich. Er wird neben seiner neuen Aufgabe im Vorstand der WITTENSTEN AG die attocube systems AG als Aufsichtsratsvor-sitzender weiterhin prägen und begleiten. 

1.Können Sie uns einen groben Einblick in Ihre Innovationsfabrik geben?

Die Innovationsfabrik an unserem Hauptstandort ist die Klammer eines traditionellen Maschinenbauers, der ursprünglich von der Getriebetechnologie kommt, um in die moderne Mechatronik und Cybertronik vorzustoßen.

Dahinter verbirgt sich ein hochmodernes Gebäude – in dessen hinteren Teil die Produktion angesiedelt und im vorderen Teil die Projektleiter sowie der Vertrieb und andere Fachbereiche angesiedelt sind. Für die innovativen/mechatronischen Bereiche haben wir ein Innovationlab, ein Digitalisierungscenter sowie einen Querdenkerraum – also Räumlichkeiten zum Denken und modernste Arbeitsstrukturen, die sich sehr gut für Projekte eignen, die Innovation und Digitalisierung beinhalten. Aktuell laufen dort rund hundert Projekte – teils Kundenprojekte, interne Innovationsprojekte und Digitalisierungsprojekte.

2. Was sind für Sie die wichtigsten Erfolgsfaktoren bei Digitalprojekten?

Gute Leute und nah am Markt sein. Ich sehe dies ähnlich, als ein neues Produkt für einen Kunden zu entwickeln.

3. Worauf können sich die Teilnehmer der Data Leader Days bei Ihrer Keynote zum Thema WITTENSTEINs smarte Roadmap – Digitale Produkte & Data Driven Services am 15.11.2018 freuen?

Industrie 4.0 ist das Zielbild, bei dem sich das Werkstück durch die Werkhalle seinen Weg sucht und alles digital vernetzt ist. Da tun wir uns gegenwärtig noch ein wenig schwer, was schade ist, denn würden wir alles durchdigitalisiert haben, hätten wir am Ende rund 30% mehr eine deutlich höhere Produktivität. Wir fokussieren uns derzeit darauf, unsere Produkte für den Kunden digital zu machen. So wird beispielhaft das Getriebe mit einem Sensor versehen, so dass wir Temperatur, Schwingungen bzw. Resonanzen, Ölstand und Metallpartikel im Öl messen können und dann Themen wie Condition Monitoring bei unseren Komponenten als funktionale Bestandteile mitgeben können. Der Maschinenbauer, der es einbaut, kann diese Daten verwenden und am Ende der Betreiber daraus Nutzen ziehen. Es geht also darum, Motoren, Getriebe und alle Komponenten, die wir bauen, zunächst intelligent zu machen, um diese Intelligenz an die Maschinen und Umgebung weitergeben zu können. Hier sind wir mit hoher Geschwindigkeit unterwegs. Dies beinhaltet auch, die Mitarbeiter über unser Digitalisierungscenter hinaus mitzunehmen und aufzuklären, dass sie später diese Daten nutzen können. Darauf und auf weitere Themen unserer smarten Roadmap dürfen sich die Teilnehmer freuen.

Dr. Dirk Haft präsentierte am 15. November 2018, dem zweiten Tag der Data Leader Days 2018, über „Keynote: WITTENSTEINs smarte Roadmap – Digitale Produkte & Data Driven Services“.

Interview: Data Warehousing in der Cloud

Interview mit Thomas Scholz von Snowflake über Data Warehousing in der Cloud

Thomas Scholz ist Sales Engineer bei Snowflake und Experte für analytische Datenbank. Der studierte Informatiker befasst sich bereits seit dem Beginn seiner Karriere vor mehr als 10 Jahren mit den Herausforderungen und Potentialen des Datenwachstums. Heute berät Herr Scholz Kunden beim Weg in die Cloud und dem Einsatz analytischer Datenbanken zur Verbesserung der Möglichkeiten der Datennutzung. Snowflake ist führender Anbieter eines Cloud Services für Data Warehousing und Datenanalyse auf Plattformen wie AWS und MS Azure.

Data Science Blog: Herr Scholz, ohne Data Warehousing wären datenorientierte Geschäftsmodelle unmöglich und auch die Selbstoptimierung von Unternehmen über Datenanalysen nicht effizient. Wie vermitteln Sie die Prinzipien eines Data Warehouse (DWH) in wenigen Sätzen verständlich für Entscheider?

Ganz allgemein kann man sagen, dass ein DWH ein zentraler Datenspeicher im Unternehmen ist, der verschiedene Datenquellen vereinheitlicht und bereinigt zusammenbringt. Durch diese zentrale Rolle müssen Schnittstellen in die vielfältigen Softwarelösungen eines Unternehmens bereitgestellt werden, wobei sich die Fokussierung auf Industriestandards anbietet. Im Datenbankumfeld sind beispielsweise SQL, ODBC und JDBC aber immer mehr auch XML und JSON zu nennen.

In der Vergangenheit wurden DWHs primär zur Verarbeitung der sog. strukturierten Daten genutzt und für semi- oder unstrukturierte Daten wurde andere Konzepte wie beispielsweise Data Lakes eingesetzt. Diese Grenze verschwimmt nun allerdings vermehrt und man möchte idealerweise strukturierte und semi-strukturierte Daten in einem System verarbeiten.

Ein derartig zentraler Datenbestand ermöglicht es Unternehmen alle Geschäftsprozesse im Detail zu verstehen und entsprechend auch Erkenntnisse zur Optimierung zu gewinnen.

Data Science Blog: DWH erfolgt traditionell on-premise. Sie stehen für das DWH in der Cloud. Wo liegen die Vorteile gegenüber der traditionellen Variante?

Cloud Services zu nutzen ist ein breiter Trend und setzt sich nun auch verstärkt im DHW Bereich fort. Dies hat gute Gründe. Sehr oft werden beispielsweise Kosteneinsparpotentiale genannt. Dies ist dadurch möglich, dass man Ressourcen bedarfsgerecht dimensionieren kann und bei passender Architektur nur das bezahlen muss, was man letztlich auch genutzt hat. Kommerziell machbar ist das durch Ressourcenteilung. In einem Cloud-Rechenzentrum werden Rechner geteilt eingesetzt und zwar immer dort, wo sie gerade benötigt werden. Hierdurch werden Leerlaufzeiten vermieden und die Nutzung effizienter.

Aber auch die Skalierbarkeit spielt eine Rolle. Manche Ressourcen werden in der Cloud komplett bedarfsgerecht zur Verfügung gestellt. Beispielsweise Storage. Wenn ich viel benötige, kann ich viel nutzen – und zwar sofort. Praktisch relevante Grenzen existieren nicht. Auch die Skalierung von Rechenleistung ist ein wichtiger Aspekt und hierbei nicht nur nach oben sondern auch nach unten. Ich möchte idealerweise immer genau so viel Leistung bekommen, wie ich gerade benötige. Geschwindigkeit ist nicht mehr limitiert durch die Hardware, die ich im Hause habe. Wenn ich viel Leistung benötige, möchte ich diese auch abrufen können und da ich anschließend wieder kleiner skalieren kann, kann ich mir in intensiven Zeiten auch mehr Ressourcen leisten.

Auch der Aspekt der Agilität wird immer wieder genannt. Cloud-Services stehen mehr oder weniger auf Knopfdruck zur Verfügung. Möchte man eine neue Software im eigenen Rechenzentrum in Betrieb nehmen lassen oder Änderungen an der Konfiguration durchführen, so sind oft langwierige Prozesse erforderlich. Gerade in der schnelllebigen Zeit ist das ein nicht zu unterschätzender Aspekt.

Aber natürlich bringt Cloud auch Risiken und Herausforderungen mit sich, mit denen man sich auseinander setzen muss. So vertraut man seine Daten einem Dienstleister an. Daher muss sichergestellt sein, dass die Daten auch verschlüsselt und vor Zugriffen des Dienstleisters oder anderer unberechtigter Personen geschützt sind. Idealerweise kann der Dienstleister dies garantieren und die Sicherheit des Dienstes durch entsprechende unabhängige Zertifizierungen belegen.

Data Science Blog: Wieso und in welcher Hinsicht unterscheidet sich die Datenbankarchitektur für Clouddatenbanken von on-premise DBs?

Ein großer Vorteil der Cloud ist die elastische Skalierung von Ressourcen. Damit dieser Aspekt aber bei Datenbanken zum Tragen kommt, ist eine andersartige Architektur erforderlich. Klassische Datenbank haben eine recht starre Zuordnung von Daten und Rechenkapazitäten. Möchte man zusätzliche Recheneinheiten nutzen, so muss die Datenorganisation verändert werden, was insbesondere bei großen Datenvolumina nicht effizient ist. Snowflake setzt daher auf eine spezielle Architektur, die konkret für die Möglichkeiten in der Cloud entwickelt wurde. Kernidee ist die Trennung von Storage und Compute, also von Daten und Rechnern. Hierdurch können beide Ressourcen unabhängig voneinander skaliert werden und insbesondere Rechenkapazität bedarfsgerecht genutzt werden. In Zeiten hoher Last, möchte man mehr Ressourcen nutzen, wohingegen bei niedriger Last nur kleine Recheneinheiten oder teilweise gar keine Ressourcen benötigt werden. Da man dies bei Snowflake sekundengenau bezahlt, erkennt man schnell, die Attraktivität dieses Ansatzes. Wenn viel Leistung erforderlich ist, kann ich diese sehr schnell hinzufügen, für diesen Zeitraum bezahle ich das dann auch, aber im Mittel komme ich mit deutlich weniger Ressourcen aus und spare bares Geld.

Außerdem kann man durch die Trennung von Storage und Compute auch belieb Nutzergruppen auf dedizierte Recheneinheiten verteilen und sie somit unabhängig voneinander machen. Der Data Scientist beispielsweise erhält sein eigenes Cluster und beeinträchtigt keinen anderen Nutzer im Unternehmen. Dass die parallele Nutzung unterschiedlicher Cluster auf den gleichen Daten nicht zu Konflikten führt, regelt ein übergreifendes Transaktionsmanagement. Der Data Scientist kann also ein Cluster verwenden, dass für seine Bedürfnisse dimensioniert ist, andere Nutzergruppen erhalten eigene Systeme, die wiederum an deren Erfordernisse angepasst sind. Und aktiv muss ein Cluster nur sein, wenn die jeweilige Nutzergruppe ihr System gerade benötigt.

Data Science Blog: Wodurch grenzt sich Snowflake von anderen Cloud-Services wie von Microsoft, Amazon und Google ab?

Zunächst muss fest gehalten werden, dass Snowflake ein Dienst auf Cloud-Plattformen wie AWS oder MS Azure ist. Es handelt sich also eher um eine Partnerschaft zwischen Snowflake und den Betreibern dieser Plattformen. In einzelnen Bereichen gibt es aber tatsächlich auch Angebote der Plattformbetreiber die mit dem Leistungsangebot von Snowflake im Wettbewerb stehen. Hier gilt es, die eigenen Anforderungen genau zu definieren und die jeweilige Architektur damit abzugleichen. Neben reiner Funktionalität und Performance sollte man gerade Aspekte wie Elastizität und Nebenläufigkeit im Blick haben.

Data Science Blog: Für die erfahrenden Data Engineers, die dieses Interview lesen: Bitte hier nun einen kleinen Pitch für Snowflake!

Ich fasse mich kurz: Snowflake ist das DWH für die Cloud. Die gesamte Architektur wurde für die Cloud entwickelt, mit Snowflake kann man die vielfältigen Vorteile des Cloud Computings fürs DWH optimal nutzbar machen – und das für semi-strukturierte Daten genauso wie für klassische strukturierte Daten. Wer es nicht glaubt, kann es unkompliziert und kostenfrei ausprobieren: https://trial.snowflake.com/

Der Einsatz von Data Warehousing in der Cloud und von Künstlicher Intelligenz zur Auswertung von Geschäfts- oder Maschinendaten ist auch das Leit-Thema der zweitägigen Data Leader Days 2018 in Berlin. Am 14. November 2018 sprechen renommierte Data Leader über Anwendungsfälle, Erfolge und Chancen mit Geschäfts- und Finanzdaten. Der 15. November 2018 konzentriert sich auf Automotive- und Maschinendaten mit hochrangigen Anwendern aus der produzierenden Industrie und der Automobilzuliefererindustrie. Seien Sie dabei und nutzen Sie die Chance, sich mit führenden KI-Anwendern auszutauschen.

NetDescribe ist Sponsor der Data Leader Days 2018 in Berlin

Wir begrüßen NetDescribe als Sponsor für die Data Leader Days 2018

Die Data Leader Days am 14./15.11.2018 im Berliner Spreespeicher sind das führende Entscheider-Event, das sich mit den Möglichkeiten und Lösungen rund um die Digitalisierung, Big Data und Industrie 4.0 beschäftigt. Vor allem die hochkarätigen Referenten – die Spitze der deutschen Digitalwirtschaft – ziehen dabei Teilnehmer aus der ganzen DACH-Region an, um neue Kontakte zu knüpfen und wichtige Impulse für die eigene Weiterentwicklung zu erhalten.

NetDescribe (www.netdescribe.com) liefert mit der Aufnahme und Analyse von Maschinendaten (IT-Events) ausschlaggebende Informationen für Verantwortliche, die agile Entscheidungen im Bereich Security und IT Operations treffen müssen. Auf Basis dieser Maschinendaten schafft NetDescribe zusätzlich die Grundlage der Compliance-Nachweisbarkeit, die bei allen Aktionen gewährleistet bleiben muss.

Am zweiten Tag der Data Leader Days, dem 15. November 2018, hält Gregory Blepp, Geschäftsführer der NetDescribe GmbH, einen Vortrag über die Schaffung einer einheitlichen Datenbasis als Grundlage der Unterstützung des Management-Teams.

Zu den weiteren Speakern gehören das Who´s Who der Datenwirtschaft, u.a. Gerhard Baum (CDO, Schaeffler), Marcus Hartmann (CDO, Pro7Sat1), Dr. Joachim Schmalzl (Vorstand, Deutscher Sparkassen- und Giroverband), Dr. Christian Schlögel (CDO, KUKA), Jürgen Urbanski (VP, Airbus), Dr. Dirk Haft (Vorstand, Wittenstein), Thomas Gottschalk (Head of BASF 4.0), Dr. Helmut Linde (Global Head of Data Science, Merck), Tom Oelsner (Chief Innovation Officer, Heidelberger Druckmaschinen), Dr. Markus Rotter (Head of Network Analytics, Vodafone), Andreas Eickelkamp (CDO, FTI), Dr. Helmut Linde (Global Head of Data Science & Analytics, Merck), uvm.

IAV ist Sponsor der Data Leader Days 2018 in Berlin

Die Data Leader Days (www.dataleaderdays.com) am 14. und 15. November 2018 im Berliner Spreespeicher sind das führende Entscheider-Event, das sich mit den Möglichkeiten und Lösungen rund um die Digitalisierung, Big Data und künstlicher Intelligenz beschäftigt. Vor allem die hochkarätigen Referenten – die Spitze der deutschen Digitalwirtschaft – ziehen dabei Teilnehmer aus der ganzen DACH-Region an, um neue Kontakte zu knüpfen und wichtige Impulse für die eigene Weiterentwicklung zu erhalten.

Als einer der global führenden Engineering-Partner entwickelt IAV die Mobilität der Zukunft. Dabei bewährt sich herstellerübergreifende Engineering in Fahrzeugen auf der ganzen Welt. Mit mehr als 35 Jahren Erfahrung und einem unübertroffenen Kompetenzspektrum bringen die Mitarbeiter der IAV das Beste aus unterschiedlichsten Welten zusammen: Automotive- und IT-Welt, Hardware- und Software-Welt, Produkt- und Service-Welt.

Auftraggeber werden an über 25 IAV-Standorten mit mehr als 7.000 Mitarbeitern und einer erstklassigen technischen Ausstattung bei der Realisierung ihrer Projekte unterstützt – vom Konzept bis zur Serie, für das Ziel: bessere Mobilität.

Daniel Hess ist Head of Department Software & Algorithms bei der IAV und wird am zweiten Tag der Data Leader Days zu einem besonders innovativen Thema in der Automobilindustrie referieren: „Der digitale Autodoktor, von den Symptomen zur Ursache“.

Zu den weiteren Speakern gehören das Who´s Who der Datenwirtschaft, u.a. Gerhard Baum (CDO, Schaeffler), Marcus Hartmann (CDO, Pro7Sat1), Dr. Joachim Schmalzl (Vorstand, Deutscher Sparkassen- und Giroverband), Brian Timmeny (Airbus), Dr. Dirk Haft (Vorstand, Wittenstein), Thomas Gottschalk (Head of BASF 4.0), Dr. Helmut Linde (Global Head of Data Science, Merck), Tom Oelsner (Chief Innovation Officer, Heidelberger Druckmaschinen), Dr. Markus Rotter (Head of Network Analytics, Vodafone), Andreas Eickelkamp (CDO, FTI), Dr. Helmut Linde (Global Head of Data Science & Analytics, Merck), uvm.

Zum Event anmelden können sich Teilnehmer direkt auf Data Leader Days.