Beiträge

Freier Eintritt für Young Professionals zu den Data Leader Days 2018

Jetzt bewerben und kostenfrei beim Spitzenevent der Datenwirtschaft am 14. oder 15. November in Berlin dabei sein!
Die Data Leader Days senden regelmäßig wichtige Impulse in die Big Data und KI-Welt aus und sind ein führendes Forum für Wissens-, Ideen- und Informationsaustausch. Die Spitzen von Anwenderunternehmen zeigen exklusiv in einem innovativen Programm mit Keynote, Präsentationen sowie Use & Business Cases auf, wie Digitalisierung und Künstliche Intelligenz umgesetzt und zum neuen Wettbewerbsvorteil werden.

Zu den Speakern gehören die Data Leader von E.ON, Pro7Sat1, Deutscher Sparkassen- und Giroverband, Airbus, Wittenstein, BASF, Merck, Heidelberger Druckmaschinen, Vodafone, FTI und von weiteren Unternehmen.

Bewerbe Dich bis zum 02.11.2018 mit einem kurzen Statement, warum Du dabei sein möchtest! Schicke mir Dein Statement an linhchi.nguyen@datanomiq.de und überzeuge uns.
Ist dein Statement aussagekräftig und überzeugend, laden wir Dich kostenlos zu einem der beiden Veranstaltungstage ein.

Letzter Aufruf: Wir suchen noch genau einen Volunteer für den Data Leader Days 2018

Die Data Leader Days sind das Entscheider-Event für die Datenwirtschaft. Die Fachkonferenz hat sich seit Gründung im Jahr 2016 als eines der exklusivsten Events rund um die Themen Big Data und künstliche Intelligenz etabliert. In diesem Jahr werden die Data Leader Days erstmalig auf zwei Tage mit unterschiedlichen Schwerpunkten erweitert:

14. November 2018: Commercial & Finance Data

15. November 2018: Industrial & Automotive Data

Für alle Studenten mit Bezug zum Data Science: Wir bieten Euch Kontakte zu vielen potenziellen Arbeitgebern sowie viel Wissenswertes über Big Data und KI in der Unternehmenspraxis:

Sei Volunteer für die Data Leader Days 2018 in Berlin: www.dataleaderdays.com. Schreibe mir hier via Xing.com oder direkt an linhchi.nguyen@datanomiq.de

Interview: Dem Wettbewerb voraus mit Künstlicher Intelligenz

Interview mit Benjamin Aunkofer, Chief Data Scientist bei DATANOMIQ Applied Data Science, über die Anwendungen, die KI schon heute übernehmen kann und was bis 2020 auf deutsche Unternehmen zukommt.

Benjamin Aunkofer ist Chief Data Scientist bei DATANOMIQ und befasst sich mit Data Science und Machine Learning im Kontext von Business Analytics. Er ist in der Praxis und in der Lehre tätig. Neben dem täglichen Beratungsgeschäft arbeitet Herr Aunkofer mit seinem Team an einer Artificial Intelligence Enterprise Integration, einer universellen Plattform für KI im Unternehmen.

Möchten Sie Herrn Aunkofer persönlich kennenlernen? Treffen Sie ihn persönlich an einem der beiden Data Leader Days 2018 (www.dataleaderdays.com).

1. Herr Aunkofer, Künstliche Intelligenz scheint das Buzzword für 2018 zu sein. Alles nur Hype?

Big Data war das Buzzword der vergangenen Jahre und war – trotz mittlerweile etablierter Tools wie SAP Hana, Hadoop und weitere – betriebswirtschaftlich zum Scheitern verurteilt. Denn Big Data ist ein passiver Begriff und löst keinesfalls auf einfache Art und Weise alltägliche Probleme in den Unternehmen. Soweit liegen Kritiker richtig.

Dabei wird völlig verkannt, dass Big Data die Vorstufe für den eigentlichen Problemlöser ist, der gemeinhin als Künstliche Intelligenz (KI) bezeichnet wird. KI ist ein Buzzword, dessen langfristiger Erfolg und Aktivismus selbst von skeptischen Experten nicht infrage gestellt wird. Daten-Ingenieure sprechen im Kontext von KI hier aktuell bevorzugt von Deep Learning; wissenschaftlich betrachtet ein Teilgebiet der KI. Da die meisten Leser mit dem Begriff „KI“ wohl eher Hollywood-Bilder im Kopf haben, versuche ich begrifflich bei „Deep Lerning“ zu bleiben. Ich entschuldige mich aber im Voraus dafür, dass ich dann doch wieder selbst von KI sprechen werde, damit dann aber im Kern Deep Learning meine.

2. Was kann Deep Learning denn schon heute im Jahr 2018?

Deep Learning Algorithmen laufen bereits heute in Nischen-Anwendungen produktiv, beispielsweise im Bereich der Chatbots oder bei der Suche nach Informationen als Suchmaschine. Sie übernehmen ferner das Rating für die Kreditwürdigkeit und sperren Finanzkonten, wenn sie erlernte Betrugsmuster erkennen. Im Handel findet Deep Learning bei bestimmten Pionieren die optimalen Einkaufsparameter sowie den besten Verkaufspreis, zumindest für ausgewählte Produktgruppen.

Getrieben wird Deep Learning insbesondere durch prestigeträchtige Vorhaben wie das autonome Fahren, dabei werden die vielfältigen Anwendungen im Geschäftsbereich oft vergessen.

3. Wo liegen die Grenzen von Deep Learning?

Und Big Data ist das Futter für Deep Learning. Daraus resultiert auch die Grenze des Möglichen, denn für strategische Entscheidungen eignet sich KI bestenfalls für das Vorbereitung einer Datengrundlage, aus denen menschliche Entscheider eine Strategie entwickeln. KI wird zumindest in dieser Dekade nur auf operativer Ebene Entscheidungen treffen können, insbesondere in der Disposition, Instandhaltung, Logistik und für den Handel auch im Vertrieb – anfänglich jeweils vor allem als Assistenzsystem für die Menschen.

Sicherlich gibt es immer auch eher frustrierende Erfahrung mit Deep Learning. Es gibt immer noch etliche Bugs in Bilderkennungssoftware und auch Chatbots oder Assistenzsystem wie Alexa, Cortana oder Siri sind nicht ohne Frustpotenzial, da alles noch nicht reibungslos funktioniert. Vor zwei Jahrzehnten waren Touchscreens oder internetfähige mobile Endgeräte nicht frustfrei nutzbar, heute jedoch aus unserem Alltag nicht mehr wegzudenken. Ähnlich wird sich das auch mit künstlicher Intelligenz verhalten.

Genau wie das autonome Fahren mit Assistenzsystemen beginnt, wird auch im Unternehmen immer mehr die KI das Steuer übernehmen.

4. Was wird sich hinsichtlich KI bis 2020 tun? Wie wird sich der Markt wandeln?

Derzeit stehen wir erst am Anfang der Möglichkeiten, die Künstliche Intelligenz uns bietet. Das Markt-Wachstum für KI-Systeme und auch die Anwendungen erfolgt exponentiell. Entsprechend wird sich auch die Arbeitsweise für KI-Entwickler ändern müssen. Mit etablierten Deep Learning Frameworks, die mehrheitlich aus dem Silicon Valley stammen, zeichnet sich der Trend ab, der für die Zukunft noch weiter professionalisiert werden wird: KI-Frameworks werden Enterprise-fähig und Distributionen dieser Plattformen werden es ermöglichen, dass KI-Anwendungen als universelle Kernintelligenz für das operative Geschäft für fast alle Unternehmen binnen weniger Monate implementierbar sein werden.

Wir können bis 2020 also mit einer Alexa oder Cortana für das Unternehmen rechnen, die Unternehmensprozesse optimiert, Risiken berichtet und alle alltäglichen Fragen des Geschäftsführers beantwortet – in menschlich-verbal formulierten Sätzen.

Der Einsatz von Künstlicher Intelligenz zur Auswertung von Geschäfts- oder Maschinendaten ist auch das Leit-Thema der zweitägigen Data Leader Days 2018 in Berlin. Am 14. November 2018 sprechen renommierte Data Leader über Anwendungsfälle, Erfolge und Chancen mit Geschäfts- und Finanzdaten. Der 15. November 2018 konzentriert sich auf Automotive- und Maschinendaten mit hochrangigen Anwendern aus der produzierenden Industrie und der Automobilzuliefererindustrie. Seien Sie dabei und nutzen Sie die Chance, sich mit führenden KI-Anwendern auszutauschen.