Beiträge

IAV ist Sponsor der Data Leader Days 2018 in Berlin

Die Data Leader Days (www.dataleaderdays.com) am 14. und 15. November 2018 im Berliner Spreespeicher sind das führende Entscheider-Event, das sich mit den Möglichkeiten und Lösungen rund um die Digitalisierung, Big Data und künstlicher Intelligenz beschäftigt. Vor allem die hochkarätigen Referenten – die Spitze der deutschen Digitalwirtschaft – ziehen dabei Teilnehmer aus der ganzen DACH-Region an, um neue Kontakte zu knüpfen und wichtige Impulse für die eigene Weiterentwicklung zu erhalten.

Als einer der global führenden Engineering-Partner entwickelt IAV die Mobilität der Zukunft. Dabei bewährt sich herstellerübergreifende Engineering in Fahrzeugen auf der ganzen Welt. Mit mehr als 35 Jahren Erfahrung und einem unübertroffenen Kompetenzspektrum bringen die Mitarbeiter der IAV das Beste aus unterschiedlichsten Welten zusammen: Automotive- und IT-Welt, Hardware- und Software-Welt, Produkt- und Service-Welt.

Auftraggeber werden an über 25 IAV-Standorten mit mehr als 7.000 Mitarbeitern und einer erstklassigen technischen Ausstattung bei der Realisierung ihrer Projekte unterstützt – vom Konzept bis zur Serie, für das Ziel: bessere Mobilität.

Daniel Hess ist Head of Department Software & Algorithms bei der IAV und wird am zweiten Tag der Data Leader Days zu einem besonders innovativen Thema in der Automobilindustrie referieren: „Der digitale Autodoktor, von den Symptomen zur Ursache“.

Zu den weiteren Speakern gehören das Who´s Who der Datenwirtschaft, u.a. Gerhard Baum (CDO, Schaeffler), Marcus Hartmann (CDO, Pro7Sat1), Dr. Joachim Schmalzl (Vorstand, Deutscher Sparkassen- und Giroverband), Brian Timmeny (Airbus), Dr. Dirk Haft (Vorstand, Wittenstein), Thomas Gottschalk (Head of BASF 4.0), Dr. Helmut Linde (Global Head of Data Science, Merck), Tom Oelsner (Chief Innovation Officer, Heidelberger Druckmaschinen), Dr. Markus Rotter (Head of Network Analytics, Vodafone), Andreas Eickelkamp (CDO, FTI), Dr. Helmut Linde (Global Head of Data Science & Analytics, Merck), uvm.

Zum Event anmelden können sich Teilnehmer direkt auf Data Leader Days.

Interview: Dem Wettbewerb voraus mit Künstlicher Intelligenz

Interview mit Benjamin Aunkofer, Chief Data Scientist bei DATANOMIQ Applied Data Science, über die Anwendungen, die KI schon heute übernehmen kann und was bis 2020 auf deutsche Unternehmen zukommt.

Benjamin Aunkofer ist Chief Data Scientist bei DATANOMIQ und befasst sich mit Data Science und Machine Learning im Kontext von Business Analytics. Er ist in der Praxis und in der Lehre tätig. Neben dem täglichen Beratungsgeschäft arbeitet Herr Aunkofer mit seinem Team an einer Artificial Intelligence Enterprise Integration, einer universellen Plattform für KI im Unternehmen.

Möchten Sie Herrn Aunkofer persönlich kennenlernen? Treffen Sie ihn persönlich an einem der beiden Data Leader Days 2018 (www.dataleaderdays.com).

1. Herr Aunkofer, Künstliche Intelligenz scheint das Buzzword für 2018 zu sein. Alles nur Hype?

Big Data war das Buzzword der vergangenen Jahre und war – trotz mittlerweile etablierter Tools wie SAP Hana, Hadoop und weitere – betriebswirtschaftlich zum Scheitern verurteilt. Denn Big Data ist ein passiver Begriff und löst keinesfalls auf einfache Art und Weise alltägliche Probleme in den Unternehmen. Soweit liegen Kritiker richtig.

Dabei wird völlig verkannt, dass Big Data die Vorstufe für den eigentlichen Problemlöser ist, der gemeinhin als Künstliche Intelligenz (KI) bezeichnet wird. KI ist ein Buzzword, dessen langfristiger Erfolg und Aktivismus selbst von skeptischen Experten nicht infrage gestellt wird. Daten-Ingenieure sprechen im Kontext von KI hier aktuell bevorzugt von Deep Learning; wissenschaftlich betrachtet ein Teilgebiet der KI. Da die meisten Leser mit dem Begriff „KI“ wohl eher Hollywood-Bilder im Kopf haben, versuche ich begrifflich bei „Deep Lerning“ zu bleiben. Ich entschuldige mich aber im Voraus dafür, dass ich dann doch wieder selbst von KI sprechen werde, damit dann aber im Kern Deep Learning meine.

2. Was kann Deep Learning denn schon heute im Jahr 2018?

Deep Learning Algorithmen laufen bereits heute in Nischen-Anwendungen produktiv, beispielsweise im Bereich der Chatbots oder bei der Suche nach Informationen als Suchmaschine. Sie übernehmen ferner das Rating für die Kreditwürdigkeit und sperren Finanzkonten, wenn sie erlernte Betrugsmuster erkennen. Im Handel findet Deep Learning bei bestimmten Pionieren die optimalen Einkaufsparameter sowie den besten Verkaufspreis, zumindest für ausgewählte Produktgruppen.

Getrieben wird Deep Learning insbesondere durch prestigeträchtige Vorhaben wie das autonome Fahren, dabei werden die vielfältigen Anwendungen im Geschäftsbereich oft vergessen.

3. Wo liegen die Grenzen von Deep Learning?

Und Big Data ist das Futter für Deep Learning. Daraus resultiert auch die Grenze des Möglichen, denn für strategische Entscheidungen eignet sich KI bestenfalls für das Vorbereitung einer Datengrundlage, aus denen menschliche Entscheider eine Strategie entwickeln. KI wird zumindest in dieser Dekade nur auf operativer Ebene Entscheidungen treffen können, insbesondere in der Disposition, Instandhaltung, Logistik und für den Handel auch im Vertrieb – anfänglich jeweils vor allem als Assistenzsystem für die Menschen.

Sicherlich gibt es immer auch eher frustrierende Erfahrung mit Deep Learning. Es gibt immer noch etliche Bugs in Bilderkennungssoftware und auch Chatbots oder Assistenzsystem wie Alexa, Cortana oder Siri sind nicht ohne Frustpotenzial, da alles noch nicht reibungslos funktioniert. Vor zwei Jahrzehnten waren Touchscreens oder internetfähige mobile Endgeräte nicht frustfrei nutzbar, heute jedoch aus unserem Alltag nicht mehr wegzudenken. Ähnlich wird sich das auch mit künstlicher Intelligenz verhalten.

Genau wie das autonome Fahren mit Assistenzsystemen beginnt, wird auch im Unternehmen immer mehr die KI das Steuer übernehmen.

4. Was wird sich hinsichtlich KI bis 2020 tun? Wie wird sich der Markt wandeln?

Derzeit stehen wir erst am Anfang der Möglichkeiten, die Künstliche Intelligenz uns bietet. Das Markt-Wachstum für KI-Systeme und auch die Anwendungen erfolgt exponentiell. Entsprechend wird sich auch die Arbeitsweise für KI-Entwickler ändern müssen. Mit etablierten Deep Learning Frameworks, die mehrheitlich aus dem Silicon Valley stammen, zeichnet sich der Trend ab, der für die Zukunft noch weiter professionalisiert werden wird: KI-Frameworks werden Enterprise-fähig und Distributionen dieser Plattformen werden es ermöglichen, dass KI-Anwendungen als universelle Kernintelligenz für das operative Geschäft für fast alle Unternehmen binnen weniger Monate implementierbar sein werden.

Wir können bis 2020 also mit einer Alexa oder Cortana für das Unternehmen rechnen, die Unternehmensprozesse optimiert, Risiken berichtet und alle alltäglichen Fragen des Geschäftsführers beantwortet – in menschlich-verbal formulierten Sätzen.

Der Einsatz von Künstlicher Intelligenz zur Auswertung von Geschäfts- oder Maschinendaten ist auch das Leit-Thema der zweitägigen Data Leader Days 2018 in Berlin. Am 14. November 2018 sprechen renommierte Data Leader über Anwendungsfälle, Erfolge und Chancen mit Geschäfts- und Finanzdaten. Der 15. November 2018 konzentriert sich auf Automotive- und Maschinendaten mit hochrangigen Anwendern aus der produzierenden Industrie und der Automobilzuliefererindustrie. Seien Sie dabei und nutzen Sie die Chance, sich mit führenden KI-Anwendern auszutauschen.