Beiträge

Interview: Wirtschaftlichkeitsbetrachtung von Data Science Anwendungen im eCommerce und Handel

Interview mit Herrn Nicolas March von der REWE Group/REWE Digital GmbH über die Wirtschaftlichkeitsbetrachtung von Data Science Anwendungen im eCommerce und Handel. 

Herr Dr. Nicolas March ist Head of Analytics bei der REWE Digital – einem Unternehmen der REWE Group. Der promovierte Betriebswirt beschäftigt sich seit über 15 Jahren mit Business Intelligence und Advanced Analytics in unterschiedlichen Branchen, wie Handel, Telekommunikation und verarbeitender Industrie. Vor seiner Zeit bei REWE digital war er IT Consultant in der Digital Division der Accenture GmbH.

Herr March, in welchem Verhältnis stehen Big Data, Data Science, Machine Learning und Künstliche Intelligenz Ihrer Erfahrung und Ansicht nach untereinander?

Zunächst sind das keine überschneidungsfreien Begriffe oder Bereiche. So sind sehr häufig Data Science Anwendungen der analytische Kern in einem Big Data Produkt, beispielsweise ein Empfehlungsalgorithmus in einem Webshop. Die Big Data Technologien ermöglichen einerseits das Handling der extremen Datenmengen aus Web- und Kassensystemen, andererseits geben sie den technologischen Rahmen für die Integration der Auswertungsmethoden vor. Das kann eine einfache Heuristik sein oder z. B. eine Methode des maschinellen Lernens, mit deren Hilfe man Erkenntnisse aus den Daten extrahiert. Ist der Grad des selbständigen Erkenntnisgewinns und der automatisierten Verwendung durch die technische Methode sehr hoch, kann man aus meiner Sicht von einem Verfahren der „künstlichen Intelligenz“ sprechen. Da dies häufig durch Verwendung von Deep Learning Algorithmen bzw. mit neuronalen Netzen umgesetzt wird, werden diese Methoden auch häufig mit KI gleichgestellt.

Wer ist in Ihrer Branche denn der Hauptantreiber der Datennutzung? Geht dieser Drang eher von der Geschäftsführung aus oder von den Fachabteilungen?

Im LEH hat man erkannt, dass der Kunde ein möglichst auf seine Bedürfnisse abgestimmtes Einkaufserlebnis verlangt. Das geht mit einer zunehmenden Digitalisierung des Einkaufsprozesses im stationären Handel als auch mit der Bereitstellung von Online-Liefer- und Abholservices einher, bei denen der Kunde über Website und Mobile-App die Ware bestellen kann. Das dann – im Rahmen der gesetzlichen Vorgaben – die anfallenden Daten z. B. für die Personalisierung im Marketing oder eine effiziente Produktentwicklung nutzbar gemacht werden kann, versteht sich von selbst. Daneben ist den Entscheidern aber auch bewusst, dass man durch die Digitalisierung insbesondere auf Basis von Data Science Anwendungen bestehende Prozesse optimieren kann und muss, um wettbewerbsfähig zu bleiben.

Bei der Gründung von REWE digital hat man diese Ziele von Anfang an ausgelobt, so dass datengestütztes Arbeiten und Entscheiden ein grundsätzliches Leitprinzip darstellt. Dieser Fokus ist also in der DNA des Unternehmens verankert und wird sowohl von den Mitarbeitern der Fachabteilungen als auch der Geschäftsführung gelebt und eingefordert. Aber natürlich ist die Intensität dieser Leitlinie in den Fachabteilungen durchaus unterschiedlich ausgeprägt.

Wie gewährleisten Sie eine angemessene ROI-Einschätzung (Return-on-Investment)? Und wie stellen Sie sicher, dass die Produktentwicklung diesen ROI-Gedanken beibehält?

Bei REWE digital ist die Analytics Abteilung in den Produktentwicklungs- und Portfolio-Prozess eingebunden – und zwar von Beginn an. Das gilt nicht nur für viele Big Data Produkte mit einem analytischen Kern, bei denen wir ohnehin an Bord sind, sondern für beinahe alle Initiativen. In einer agilen Produktentwicklung soll möglichst jeder die Möglichkeit haben, Ideen und Initiativen einzubringen, die das Business vorantreiben. Der Vielzahl an aufkommenden Ideen stehen jedoch häufig begrenzte Ressourcen gegenüber. Um diese bewerten und ressourcenschonend umzusetzen, liefern unsere Analytiker zu jeder Initiative bzw. Idee das unterstützende Zahlenwerk. Beispielsweise erstellen wir Vorabanalysen zur Bestimmung, ob die Grundannahmen einer Initiative richtig sind und sich ggf. bereits in den vorhandenen Daten auch wiederfinden. Zudem helfen wir den Product Ownern auch während der Initiative, in dem wir einfache Anpassungen oder den MVP durch A/B- und Hypothesentests frühzeitig auf Werthaltigkeit überprüfen. Auch nach dem Go-Live wird mit unserer Hilfe geprüft, ob die gesetzten Ziele erreicht wurden. Mit diesen Analysen und A/B-Tests vor, während und nach der Entwicklung helfen wir dem CPO (Chief Product Owner), ein fundiertes Portfolio zusammenzustellen, Erkenntnisse für zukünftige Initiativen zu gewinnen und den ROI seiner Maßnahmen zu sichern. Dafür ist die Produktentwicklung dankbar und nimmt unseren Support gerne in Anspruch.

Welche Anwendungsfälle sehen Sie zurzeit als die wichtigsten im Kontext der Datennutzung? Und welche Themen hätten durchaus noch ein paar Jahre Zeit?

Natürlich sind weiterhin viele Analytics Themen auf die Kundenanalyse ausgerichtet und dienen insbesondere dem Marketing und der Produktentwicklung z. B. im Rahmen der Personalisierung. Den traditionellen Unternehmen ist aber bewusst geworden, dass Analytics eine Querschnittsfunktion ist, die in vielen Bereichen große Potentiale freisetzen kann. Das Thema „Supply Chain Analytics“ verspricht ein riesiges Potential, da mit Big Data und Data Science noch viele kostenintensive Prozesse optimiert werden können. Im Handel sind das beispielsweise Anwendungsfälle, wie die optimale Kapazitäts- und Warenbestellprognose mit Big Data Technologien zur Vermeidung von Abschriften und Stock-out. Aber auch kleinere Prozesse, wie die Standzeitenschätzung von Lieferfahrern helfen, den Personaleinsatz zu optimieren.

Ein weiteres Gebiet, das aus meiner Sicht in allen mir bekannten Unternehmen ein noch großes Entwicklungspotential verspricht, ist „People Analytics“ –  gerade weil die Investition in den Faktor „menschliche Arbeitskraft“ häufig einer der größten Kostenpositionen darstellt. Daher rückt auch in den HR Abteilungen das datengetriebene, analytische Arbeiten mehr und mehr in den Fokus. Anwendungsfälle, wie die Erfolgsanalyse von Recruiting-Kampagnen oder die Prognose von Mitarbeiter-Churn kann für Arbeitgeber ein Wettbewerbsvorteil im hart umkämpften Arbeitsmarkt sein. Zu bedenken ist dabei immer, dass dieses Thema in den HR-Abteilungen aufgrund der personenbezogenen Daten zu Recht mit großer Sensibilität und Vorsicht angefasst wird. People Analytics bedeutet für mich aber nicht die Überwachung des einzelnen Arbeitnehmers, sondern vielmehr die Möglichkeit, seine Arbeitsumgebung durch Analyse anonymisierter Daten optimal auf ihn anzupassen und dadurch seine Zufriedenheit in beiderseitigem Interesse zu erhöhen.

Wenn ich darüber nachdenke, welche Themen im Online-Lebensmittelhandel noch Zeit haben, dann sind das wahrscheinlich Künstliche Intelligenz in der Robotics oder der Warendistribution. Es ist sicherlich hoch spannend, wenn in der Zukunft Pick&Place Roboter auch die Tüten packen und Lieferfahrzeuge beladen könnten.  In unserer Branche denken bestimmt auch viele über die autonome Auslieferung nach. Allerdings ist die Komplexität dieser Anwendungsfälle sehr hoch und es wird bis zu deren wirtschaftlichem Einsatz ohne die Einbindung menschlicher Arbeitskraft sicher noch dauern.

Wie setzt sich Ihr Team zusammen? Unterscheiden Sie strikt zwischen Data Engineer und Data Scientist?

Unsere Data Scientists arbeiten eng mit Data Engineers zusammen. Ich habe noch selbst viele Datenquellen erschlossen und deren Transformation vorgenommen, bevor mit der Erstellung komplexer Modelle begonnen wurde. Da die Infrastrukturlandschaft aber vielseitiger und komplexer geworden ist und sich nicht mehr nur auf eine Hand voll relationaler Datenbanksysteme oder weniger Message Services beschränkt, sind erfahrene Data Engineers für deren Nutzbarmachung unerlässlich. Data Engineers müssen wissen, wie sie unterschiedliche Quellsysteme in die Analyseumgebungen integrieren und auch häufig die Fachlichkeit in den Daten verstehen. Es kann vorkommen, dass dabei auch mit Rechenmethoden und Frameworks bereits Daten voraggregiert werden oder in KPIs überführt werden. Die Modellierung zur Entwicklung eines Produkts oder eines analytischen Prozesses ist bei uns aber weiterhin eher der Job des Data Scientists.

Wie schaffen Sie die Integration von Analysten und Data Scientists sowie Software Entwicklern für die Produktentwicklung?

Unser Team an Data Scientists wird grob in zwei Bereichen eingesetzt. Zum einen entwickeln sie prototypische Modelle zur Verbesserung von Prozessen in den Fachabteilungen. Geht es zum anderen von Beginn an um die Erstellung eines Softwareprodukts mit einem analytischen Kern – wie eine Empfehlungsmodul im Webshop -, ist der Data Scientist ein Teil des agilen Entwicklungsteams und bringt die analytische Kompetenz mit ein. Unsere Data Scientists arbeiten dann im Tagesgeschäft als vollwertiges Mitglied im SCRUM-Modus in einem der Big Data oder Plattform-Teams mit. Diese Integration hat für beide Seiten große Vorteile. Die Developer haben stets einen Analytiker im Team der die Datenlage, Anforderungen und Prozesse des Business sehr genau kennt und dieses Wissen mit in das Team einbringt. Andererseits versteht der Data Scientist den Softwareentwicklungsprozess und bekommt mit, wie beispielsweise technische Limits ein konzeptionelles Modell ggf. nicht unterstützen. Durch Rotation und Wechsel zwischen diesen Einsatzszenarien wollen wir sicherstellen, dass die Data Scientists sehr vielseitig einsetzbar sind und gleichzeitig ihre Methodenkompetenz stets ausbauen können.

Interview mit Daniel Heß von der IAV

Interview mit Daniel Heß von der IAV GmbH in Berlin. Daniel Hess ist Head of Department Software & Algorithms bei der IAV und wird am zweiten Tag der Data Leader Days 2018 zu einem besonders innovativen Thema in der Automobilindustrie referieren: „Der digitale Autodoktor, von den Symptomen zur Ursache“.

1. Herr Heß, womit genau befassen Sie sich bei IAV? Und welche Rolle spielt Data Science dabei?

Wir entwickeln Steuergerätesoftware und –systeme für die Automobilindustrie und industrielle Anwendungen wie Windkraft und Bohrtechnik.

Wir nutzen Data Science auf vielfältige Weise. Schwerpunkt ist natürlich – unserer Herkunft entsprechend – die Modellierung physikalisch-chemischer Prozesse in Motoren und Abgasanlagen. Hier haben wir in der Vergangenheit schon so viele Messdaten aus unseren Entwicklungsprojekten aufgezeichnet, dass sie von Hand nicht mehr auszuwerten waren. Darum sind bei uns viele Algorithmen zum Auffinden von Events in großen Datenmengen und zur Berechnung empirischer Modelle entstanden. Heute wenden wir zusätzlich auch Methoden an, die man der „Künstlichen Intelligenz“ zuordnen würde, z. B. Random Forest Klassifikatoren oder Neuronale Netze.

2. Stichwort: momentane Herausforderungen. Welche Anwendungsfälle und Ideen beschäftigen Sie im Moment konkret? 

Ein sehr aktuelles Thema ist die Erkennung von Fehlern in der Abgasanlage und der Hinweis auf die fehlerhafte Komponente. Die Abgasreinigung von Verbrennungsmotoren funktioniert heute nur noch im komplexen Zusammenspiel verschiedener Komponenten: Katalysatoren, Sensoren, Steller, Reduktionsmedien wie AdBlue etc. Salopp gesagt: Ein moderner Pkw ist ein kleines Chemiewerk, das spazieren fährt und dafür sorgt, dass hinten möglichst saubere Luft herauskommt. Kleine Fehler bei Bauteilen – etwa durch Alterung oder Verschleiß – haben großen Einfluss auf die Güte der Abgasreinigung und müssen deshalb sofort erkannt werden. Natürlich will man beim Werkstattaufenthalt nicht die gesamte Anlage tauschen, sondern nur das fehlerhafte Bauteil.

3. Und wohin geht die Reise bei Ihren Themen?

Heute arbeiten wir „offline“ – das heißt mit Daten, die irgendwann einmal bei einem Fahr- oder Prüfstandsversuch aufgezeichnet wurden. Sie stammen üblicherweise von einer sehr begrenzten Zahl von Versuchsfahrzeugen, die sehr teuer und entsprechend rar sind. Unsere Ergebnisse und Algorithmen werden dann im Anschluss recht statisch und fest in die Serienfahrzeuge einprogrammiert. In Zukunft können wir uns natürlich vorstellen, einige Strategien auch im Fahrbetrieb lernen zu lassen. Man könnte zum Beispiel die Werte aus verschiedenen Fahrzeugen miteinander vergleichen, um zu sehen, was normal ist und damit eine höhere Robustheit für Diagnosen erzielen. Heute ist das noch nicht möglich, denn die wenigsten Autos sind ununterbrochen online. Außerdem wären die Datenmengen so groß, dass sie die heute übliche Bandbreiten und Speicherkapazitäten sprengen würden.

4. Unternehmen erkennen nach und nach den Wert von Daten und versuchen, Strategien für deren Nutzung zu entwickeln. Wie sehen Sie die Lage in ihrem Umfeld?

Der Wert von Daten liegt für uns heute vor allem in der Verbesserung unserer Entwicklungsprozesse und -ergebnisse. Wir können durch Datenanalysen einfach schneller und genauer sein. Unsere Datenstrategie zielt darum im Wesentlichen darauf ab, aus unseren Messdaten Wissen über Zusammenhänge in Motor und Abgasnachbehandlung zu generieren, das wir dann in Modellen anwenden können. Ziele können dabei sein: höhere Modellgüte, geringerer Aufwand bei der projektspezifischen Parametrierung der Modelle durch Machine Learning oder die Optimierung des Messprozesses, was zu weniger Messungen führen würde.

5. Die Anforderungen sind vielfältig. Wie schaffen Sie es, dass sich ihre Teams den unterschiedlichen Aufgaben in den jeweiligen Branchen stellen können?

Neben den Data Scientists binden wir natürlich auch immer Fachexperten ein, die ihr System (zum Beispiel Motor oder Katalysator) kennen wie ihre sprichwörtliche Westentasche. Zusätzlich implementieren unsere Softwareentwickler die Ideen in robusten serientauglichen Code. Durch diese interdisziplinäre Zusammenarbeit entstehen viele neue Ideen und am Ende gute Lösungen.

6. Welche Rolle spielen Tools und Methoden dabei?

Wir setzen selbstverständlich Standardtools wie Matlab/Simulink und vor allem auch Python ein – letzteres bietet uns vielfältige Möglichkeiten und zahlreiche Libraries zu Themen wie maschinelles Lernen, Statistik und diskreter Mathematik. Hier wäre es einfach nicht sinnvoll, das Rad neu zu erfinden. Manchmal sind unsere Probleme aber doch so speziell, dass wir selbst etwas entwickeln müssen. Dabei liegt unser Fokus immer darauf, wiederkehrende Routineaufgaben zu automatisieren. Gerade in der Datenbereitstellung und der explorativen Analyse können uns Tools eine Menge Arbeit abnehmen. Dafür haben wir mit „IAV Mara“ auch ein eigenes Werkzeug entwickelt, das wir als Produkt vertreiben.

Der Einsatz von Künstlicher Intelligenz zur Auswertung von Geschäfts- oder Maschinendaten ist das Leit-Thema der zweitägigen Data Leader Days 2018 in Berlin. Am 14. November 2018 sprechen renommierte Data Leader über Anwendungsfälle, Erfolge und Chancen mit Geschäfts- und Finanzdaten. Der 15. November 2018 konzentriert sich auf Automotive- und Maschinendaten mit hochrangigen Anwendern aus der produzierenden Industrie und der Automobilzuliefererindustrie. Seien Sie dabei und nutzen Sie die Chance, sich mit führenden KI-Anwendern auszutauschen.

Interview: Dem Wettbewerb voraus mit Künstlicher Intelligenz

Interview mit Benjamin Aunkofer, Chief Data Scientist bei DATANOMIQ Applied Data Science, über die Anwendungen, die KI schon heute übernehmen kann und was bis 2020 auf deutsche Unternehmen zukommt.

Benjamin Aunkofer ist Chief Data Scientist bei DATANOMIQ und befasst sich mit Data Science und Machine Learning im Kontext von Business Analytics. Er ist in der Praxis und in der Lehre tätig. Neben dem täglichen Beratungsgeschäft arbeitet Herr Aunkofer mit seinem Team an einer Artificial Intelligence Enterprise Integration, einer universellen Plattform für KI im Unternehmen.

Möchten Sie Herrn Aunkofer persönlich kennenlernen? Treffen Sie ihn persönlich an einem der beiden Data Leader Days 2018 (www.dataleaderdays.com).

1. Herr Aunkofer, Künstliche Intelligenz scheint das Buzzword für 2018 zu sein. Alles nur Hype?

Big Data war das Buzzword der vergangenen Jahre und war – trotz mittlerweile etablierter Tools wie SAP Hana, Hadoop und weitere – betriebswirtschaftlich zum Scheitern verurteilt. Denn Big Data ist ein passiver Begriff und löst keinesfalls auf einfache Art und Weise alltägliche Probleme in den Unternehmen. Soweit liegen Kritiker richtig.

Dabei wird völlig verkannt, dass Big Data die Vorstufe für den eigentlichen Problemlöser ist, der gemeinhin als Künstliche Intelligenz (KI) bezeichnet wird. KI ist ein Buzzword, dessen langfristiger Erfolg und Aktivismus selbst von skeptischen Experten nicht infrage gestellt wird. Daten-Ingenieure sprechen im Kontext von KI hier aktuell bevorzugt von Deep Learning; wissenschaftlich betrachtet ein Teilgebiet der KI. Da die meisten Leser mit dem Begriff „KI“ wohl eher Hollywood-Bilder im Kopf haben, versuche ich begrifflich bei „Deep Lerning“ zu bleiben. Ich entschuldige mich aber im Voraus dafür, dass ich dann doch wieder selbst von KI sprechen werde, damit dann aber im Kern Deep Learning meine.

2. Was kann Deep Learning denn schon heute im Jahr 2018?

Deep Learning Algorithmen laufen bereits heute in Nischen-Anwendungen produktiv, beispielsweise im Bereich der Chatbots oder bei der Suche nach Informationen als Suchmaschine. Sie übernehmen ferner das Rating für die Kreditwürdigkeit und sperren Finanzkonten, wenn sie erlernte Betrugsmuster erkennen. Im Handel findet Deep Learning bei bestimmten Pionieren die optimalen Einkaufsparameter sowie den besten Verkaufspreis, zumindest für ausgewählte Produktgruppen.

Getrieben wird Deep Learning insbesondere durch prestigeträchtige Vorhaben wie das autonome Fahren, dabei werden die vielfältigen Anwendungen im Geschäftsbereich oft vergessen.

3. Wo liegen die Grenzen von Deep Learning?

Und Big Data ist das Futter für Deep Learning. Daraus resultiert auch die Grenze des Möglichen, denn für strategische Entscheidungen eignet sich KI bestenfalls für das Vorbereitung einer Datengrundlage, aus denen menschliche Entscheider eine Strategie entwickeln. KI wird zumindest in dieser Dekade nur auf operativer Ebene Entscheidungen treffen können, insbesondere in der Disposition, Instandhaltung, Logistik und für den Handel auch im Vertrieb – anfänglich jeweils vor allem als Assistenzsystem für die Menschen.

Sicherlich gibt es immer auch eher frustrierende Erfahrung mit Deep Learning. Es gibt immer noch etliche Bugs in Bilderkennungssoftware und auch Chatbots oder Assistenzsystem wie Alexa, Cortana oder Siri sind nicht ohne Frustpotenzial, da alles noch nicht reibungslos funktioniert. Vor zwei Jahrzehnten waren Touchscreens oder internetfähige mobile Endgeräte nicht frustfrei nutzbar, heute jedoch aus unserem Alltag nicht mehr wegzudenken. Ähnlich wird sich das auch mit künstlicher Intelligenz verhalten.

Genau wie das autonome Fahren mit Assistenzsystemen beginnt, wird auch im Unternehmen immer mehr die KI das Steuer übernehmen.

4. Was wird sich hinsichtlich KI bis 2020 tun? Wie wird sich der Markt wandeln?

Derzeit stehen wir erst am Anfang der Möglichkeiten, die Künstliche Intelligenz uns bietet. Das Markt-Wachstum für KI-Systeme und auch die Anwendungen erfolgt exponentiell. Entsprechend wird sich auch die Arbeitsweise für KI-Entwickler ändern müssen. Mit etablierten Deep Learning Frameworks, die mehrheitlich aus dem Silicon Valley stammen, zeichnet sich der Trend ab, der für die Zukunft noch weiter professionalisiert werden wird: KI-Frameworks werden Enterprise-fähig und Distributionen dieser Plattformen werden es ermöglichen, dass KI-Anwendungen als universelle Kernintelligenz für das operative Geschäft für fast alle Unternehmen binnen weniger Monate implementierbar sein werden.

Wir können bis 2020 also mit einer Alexa oder Cortana für das Unternehmen rechnen, die Unternehmensprozesse optimiert, Risiken berichtet und alle alltäglichen Fragen des Geschäftsführers beantwortet – in menschlich-verbal formulierten Sätzen.

Der Einsatz von Künstlicher Intelligenz zur Auswertung von Geschäfts- oder Maschinendaten ist auch das Leit-Thema der zweitägigen Data Leader Days 2018 in Berlin. Am 14. November 2018 sprechen renommierte Data Leader über Anwendungsfälle, Erfolge und Chancen mit Geschäfts- und Finanzdaten. Der 15. November 2018 konzentriert sich auf Automotive- und Maschinendaten mit hochrangigen Anwendern aus der produzierenden Industrie und der Automobilzuliefererindustrie. Seien Sie dabei und nutzen Sie die Chance, sich mit führenden KI-Anwendern auszutauschen.